A problem of Schinzel on lattice points

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Points on Ellipses

Given a square free positive integer d one may consider the arithmetical function rd(n) = #{n = x + dy/x, y ∈ Z} which can also be described as the number of lattice points on the ellipse x + dy = n and it has a natural interpretation inside the ring of algebraic integers of the field Q( √−d). The main purpose of this paper is to analyse closely this function in connection with the distribution...

متن کامل

Lattice Points on Circles

We prove that the lattice points on the circles x2 + y2 = n are well distributed for most circles containing lattice points.

متن کامل

Close Lattice Points on Circles

We classify the sets of four lattice points that all lie on a short arc of a circle which has its center at the origin; specifically on arcs of length tR on a circle of radius R, for any given t > 0. In particular we prove that any arc of length ( 40 + 40 3 √ 10 )1/3 R on a circle of radius R, with R > √ 65, contains at most three lattice points, whereas we give an explicit infinite family of 4...

متن کامل

Notes on lattice points of zonotopes and lattice-face polytopes

Minkowski’s second theorem on successive minima gives an upper bound on the volume of a convex body in terms of its successive minima. We study the problem to generalize Minkowski’s bound by replacing the volume by the lattice point enumerator of a convex body. To this we are interested in bounds on the coefficients of Ehrhart polynomials of lattice polytopes via the successive minima. Our resu...

متن کامل

Lattice Points inside Lattice Polytopes

We show that, for any lattice polytope P ⊂ R, the set int(P ) ∩ lZ (provided it is non-empty) contains a point whose coefficient of asymmetry with respect to P is at most 8d · (8l+7) 2d+1 . If, moreover, P is a simplex, then this bound can be improved to 9 · (8l+ 7) d+1 . This implies that the maximum volume of a lattice polytope P ⊂ R d containing exactly k ≥ 1 points of lZ in its interior, is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1969

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-15-2-199-203